

2 オーロラクロックの紹介

①オーロラクロックとは?

オーロラクロックは、4種類の内蔵センサを使って、フルカラー LED やスピーカーをプログラム制御します。これらを組み合わせて、プログラムすることで、自分だけのオリジナル時計づくりに挑戦してみましょう。

②オーロラクロックの仕組み

オーロラクロックには、コンピュータやセンサが内蔵されています。これらを詳しく見てみましょう。

③まとめ

オーロラクロックの仕組みは、理解できたでしょうか?オーロラクロックを動かすには、センサなどの ハードウェアとそれらを制御するソフトウェアの両方が大切です。

ここから、皆さんはオーロラクロックのハードウェアを組み立て、制御をするプログラムを作っていき ます。この製作を通して、身近な家電製品の仕組みを考えてみましょう。

部品表

3

このキットには、以下の部品があります。組み立てる前に部品のチェック(✓)をしてください。

完成済み基板の人は、5ページの①へ進んでください。

9 プログラムの基本

①プログラムとは?

プログラムとは、コンピュータに目的通りの仕事をさせるための命令の集まりで す。コンピュータは、自分で考えて仕事をすることはできません。人間がコンピュー タに仕事の手順や方法を指示しなくてはなりません。この仕事の手順や方法を記 述したものがプログラムです。プログラムを作るには、コンピュータが理解でき る言葉で書く必要があります。この言葉がプログラム言語です。オーロラクロッ クでは、専用の制御ソフトを使って、プログラムを作成します。

②仕事の流れを図解しよう

コンピュータは、プログラムに従って動きます。プログラムは、「順次」、「反復」、 「分岐」という3つの要素で作られます。どんなプログラムも、これらの要素で、 複雑な動作を表現できます。ここでは、身近な例で、それぞれの要素がどう働くか を見ていきます。そして、ブロックプログラミングやフローチャートで、身近な例 を書いてみましょう。

-9-

	製品名	センサ	計測
1	1-4-1	1-4-2	1-4-3
2	1-4-4	1-4-5	1-4-6
3	1-4-7	1-4-8	1-4-9

コンピュータとの接続を確認してみよう(6ページの「コンピュータと接続する方法」も参照してください。)

課題 5-3:周囲が明るいときは赤と青が点灯、暗いときは白と確認音が3回鳴るプログラムを作って みよう。点灯時間は自由に設定してください。

ワーク No.6 ここまでのまとめ

信号機のまとめ

ここまで、プログラムに必要な順次処理、反復処理、分岐処理を学びました。 これらを組み合わせて、信号機と身近な課題を解決する製品を作ってみましょう。

課題 6-1:実物の信号機を調べてみよう。信号機の特徴やオーロラクロックでプログラムするとき に必要になりそうな機能を書き出してみましょう。 その後、実際のプログラムを作り動作を確認してみましょう。

信号機	信号機のプログラム	
特徴		
機能		

課題 6-2:オーロラクロックを使って身近な課題を解決する製品を考えてみよう。例えば、玄関先 においておき、人が帰ってきたことを知らせる防犯灯、スイッチを押すと1時間計測す るタイマ (15 分ごとに確認音を鳴らす) など、色々工夫してみよう

プログラムの名前 / 目的	開始	プログラムスタート
	↓ ↓	Ŭ
プログラムの工夫した点		

12 ネットワークの仕組み

1. コンピュータネットワークとは

コンピュータネットワークとは、ケーブルや無線などで複数のコンピュータを接続 し、情報をやり取りできるものです。

比較的狭い範囲で使うネットワークは LAN(Local Area Network) と呼ばれ、LAN から他のネットワークに接続できるようにしたものをインターネットと呼びます。 ネットワークでは、文字、音声、静止画、動画などのデジタルメディアが流れており、 遠く離れた人と情報やサービスのやり取りができます

2. ネットワークの通信方法

インターネットやLAN を利用する場合、ネットワークに接続するコンピュータには、それぞれ IP アドレスという番号が割り振られています。この番号は、ネットワーク上での住所のようなもので、重複しない番号が割り当てられています。

13

IP アドレスの例

各コンピュータには、左図のように IP アドレスとして、 192.168.X.X が割り当てられます。(ネットワークによっ ては、別の数字が割り当てられている場合もあります。)

ネットワーク機能の使い方

1. SF-18 双方向ネットワーク機能の使い方 (Windows ソフト版のみ)

1.1 簡易版2人メッセージ通信 (1) (A) のこのパソコンの (2) パートナーの IP アドレス ③ メッセージを入力し 副 メッセージ通信 IPアドレス 192.168.144.27 て送信する。 23:192.168.144.27 <= こんにちは 43:192.168.144.27 => こんにちは A (このパソコンのアアドレス 192.168.144.22 192.168.144.22 送信するメッセージ - 反送信先IPアドレス 192.168.144.27 こんにちは (**B**) この数字を (B) " データ (\mathbf{D}) この数字をパート 送信先 IP アドレス ' 送信するメッセー 、送信 (\mathbb{C}) こんにちは ナーに伝える。 に入力する。 192 168 144 27 クリック! 1.2 応用版 2 人メッセージ通信クライアントの使い方 (応用版3人以上、クライアント担当も同じ使用方法です) (1)(2)(3) (\mathbf{F}) あなたの名前・ 送信プログラム 受信プログラム (A)送信するメッセージ 名前を入力する 開始) 開始 STAR ENEST こんにちは 音1を持らす (\mathbf{C}) (E) 📰 IP アドレス 27352 ##93# @H#5 7#28 #V#L ## 、実行 Xot=5萬個 192 168 144 27 終了 クリック! (\mathbf{B}) (D) にメッセージを入力 B から C へ使いたい命 (A)のあなたのパソコンの IP アドレスをパートナ-令を配置して線で結ぶ。 し、実行ボタンを押すと、 来 - iī (D) に伝え、パートナーの IP 受信プログラムを作った場合 メッセージが送信されま アドレスを入力する。 は、「受信プログラムセット」 す。送受信したメッセージ あなたの名前も入力する。 を押すこと。 は、(E)に表示されます。

ワークNo.9 2人でメッセージ通信

2人で直接メッセージをやり取りしてみよう

2 人でネットワークを使って、メッセージの送受信を試してみましょう。 それぞれをクライアント A、クライアント B とします。生徒番号の入力を間違わないように注意しま しょう。

